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A B S T R A C T
Objectives: Rank Preserving Structural Failure Time models are one of
the most commonly used statistical methods to adjust for treatment
switching in oncology clinical trials. The method is often applied in a
decision analytic model without appropriately accounting for addi-
tional uncertainty when determining the allocation of health care
resources. The aim of the study is to describe novel approaches to
adequately account for uncertainty when using a Rank Preserving
Structural Failure Time model in a decision analytic model. Methods:
Using two examples, we tested and compared the performance of the
novel Test-based method with the resampling bootstrap method and
with the conventional approach of no adjustment. In the first
example, we simulated life expectancy using a simple decision
analytic model based on a hypothetical oncology trial with treatment
switching. In the second example, we applied the adjustment method
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on published data when no individual patient data were available.
Results: Mean estimates of overall and incremental life expectancy
were similar across methods. However, the bootstrapped and test-
based estimates consistently produced greater estimates of uncer-
tainty compared with the estimate without any adjustment applied.
Similar results were observed when using the test based approach on
a published data showing that failing to adjust for uncertainty led to
smaller confidence intervals. Conclusions: Both the bootstrapping
and test-based approaches provide a solution to appropriately incor-
porate uncertainty, with the benefit that the latter can implemented
by researchers in the absence of individual patient data.

Copyright & 2017, International Society for Pharmacoeconomics and
Outcomes Research (ISPOR). Published by Elsevier Inc.
Modern randomized controlled trials (RCTs), which remain the
gold standard in terms of evaluating the efficacy and safety of
new interventions, often accommodate treatment switching
from the control group to the experimental treatment group at
some point during the trial. Treatment switching is primarily
driven by ethical considerations; for instance, it would be uneth-
ical to disallow treatment switching for patients randomly
allocated to therapy shown to be inferior in an interim analysis,
particularly in cases where no other nonpalliative therapy
options exist. Moreover, treatment switching can be used to
boost trial recruitment, for example, by allowing switching after
a primary endpoint has been observed (commonly, progression-
free survival) [1]. It has been reported that over half the recent
health technology assessments (HTAs) in oncology performed by
the National Institute for Health and Care Excellence (NICE) in
England and Wales and the Pharmaceutical Benefits Advisory
in Australia have involved trials that included treatment switch-
ing [2].

Standard statistical approaches used in the analysis of RCTs
are designed to compare groups based on the intention-to-treat
(ITT) principle, which means that patients are analyzed according
to their randomized treatment assignment and that all patients
who were enrolled and received treatment are included in the
analysis [3]. When patients in both groups receive the investiga-
tional intervention in a trial, such conventional analyses may not
provide an accurate estimate of the comparative effectiveness of
the two therapies, particularly for endpoints, such as overall
survival (OS), which is critical for cost-effectiveness analysis,
even though it is often not the primary endpoint of the trial.
Although it is ethically justifiable to allow patients to switch to an
experimental therapy after reaching the primary endpoint (e.g.,
progression-free survival), which may be the key endpoint for
regulatory approval, methods are required to adjust for the
effects of treatment switching on other endpoints (e.g., OS) that
are crucial for health economic analysis and HTA decision
making.

Simple methods of adjusting for treatment switching have
been historically used in HTAs, such as those excluding switchers
from the analysis or censoring their data at the time of switch,
but these can create selection bias because treatment switching
is often related to prognosis [4]. Recent recommendations indi-
cate that these simple approaches should be avoided for the
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estimation of OS and replaced with methodologies that preserve
randomization and are designed to address the issue of bias
instead [5]. The Rank Preserving Structural Failure Time (RPSFT)
model, inverse probability of censoring weights and two-stage
adjustment estimation methods have all been shown to produce
unbiased adjustments, provided the assumptions underpinning
them hold true [6–8]. The RPSFT method, introduced by Robins
and Tsiatis, provides an estimate of the OS time for the control
group had treatment switching not occurred [6]. It estimates OS
measured from the time of treatment switching by applying an
estimate of the benefit of the experimental treatment (derived
iteratively and referred to as the inverse of the acceleration factor).
This method assumes that the benefit of the experimental treat-
ment is the same whether it was received from the time of
randomization or only received later as a switch treatment
(referred to as the “constant treatment effect” assumption).

Given the potential confounding caused by treatment switch-
ing, it is important that appropriate adjustment methods are
used for health economic analyses based on treatment switching
trials and for informing HTAs. For example, in a 2012 NICE
appraisal of vemurafenib for the treatment of melanoma the
incremental cost-effectiveness ratio was decreased from over
₤75,000 per quality-adjusted life year gained to approximately
₤52,000 after adjusting for treatment switching [9]. This evidence
suggests that failure to appropriately adjust for treatment switch-
ing has the potential to lead to misinformed HTA decision
making. Although the use of adjustment methods in HTA sub-
missions is beginning to be accepted in some countries, there is
paucity of data on the role of adjustment methods in probabilistic
sensitivity analysis (PSA), which is used to capture uncertainty
and inform decision making in the HTA process [2,10]. PSA can be
defined, in terms of a health economic modeling analysis, as the
process in which “all input parameters are considered as random
quantities and therefore are associated with a probability
distribution that describes the state of science” [11]. The most
commonly used adjustment method (RPSFT model) is known
to introduce additional uncertainty when estimating (adjusted)
hazard ratios (HRs) in treatment switching trials, an effect
which also has the potential to influence HTA decision
making [6]. When survival times are adjusted for treatment
switching within decision analytic models, these adjusted HRs
are rarely used explicitly. Instead, more commonly parametric
survival curves are generated based on the adjusted patient
survival.

The aim of the present study was to describe novel
approaches to adequately adjust for uncertainty when using an
RPSFT model, by (1) simulating life expectancy using a straight-
forward decision analytic model based on a hypothetical oncol-
ogy trial with treatment switching, and (2) applying one of the
approaches on published data to demonstrate the value of
adjusting for uncertainty when using RPSFT models.
Methods

In a standard application of RPSFT model proposed by Robins and
Tsiatis [6], two different survival times for a patient, i, are
considered with notation:
•
 Ti– the observed survival time

•
 Ui– the latent survival time with no treatment
An accelerated failure time model is proposed to relate these,
such as:

UiðφÞ¼TCiþTEie
φ

where TEi is the observed time on experimental therapy, and TCi

is defined as TCi¼Ti−TEi. The treatment parameter theta ðφÞ is an
unknown with true value φ0. By assuming the latent survival
times will be balanced through randomization a g-estimation
procedure can be used to estimate φ0. This g-estimation proceeds
by proposing a candidate set of values for the unknown param-
eter φ; estimating the latent survival time UiðφÞ for both arms and
then comparing as randomized using a suitable test. The candi-
date value of φ which leads to no difference in the comparison of
the latent survival time as randomized is then taken as the
estimate for φ0. Using this estimate for φ0 the counter factual
latent survival Ui for the control arm can then be compared with
the observed survival time Ti of the experimental arm using
standard statistical methods. Robins and Tsiatis noted that when
considering confidence intervals (CIs) for HRs estimated from
RPSFT corrected data, the P value from the test used in the g-
estimation procedure should be used to create symmetric CIs [6].
This is typically done by estimating an adjusted standard error
(SEADJ) for the treatment effect ( β) using equation 1, where X2

ITT is
the chi-square statistic from the log rank test used for g-
estimation applied to the ITT comparison.

SEADJ β̂
� �

¼ β̂ffiffiffiffiffiffiffiffiffi
X2
ITT

q ð1Þ

The present analysis describes an extension to this approach
for use in parametric extrapolation and comparison with the
alternative approach of bootstrapping with a small simulation
study. The simulation study and a reanalysis of published data
are used to illustrate the impact of not performing such a
correction on PSA in a decision analytic model.

Estimating the Covariance Matrix Using an Adjustment
Factor

The method assumes that an RPSFT model has been used to
estimate counterfactual survival times for patients on standard
care and assuming that treatment switching had not occurred
following the approaches described in detail in the literature
[6,8,12]. Following this step, the algorithm to apply the adjust-
ment to a parametric covariance matrix is as follows:
1.
 Fit a parametric survival model to the observed data for the
experimental arm and the counterfactual control arm sur-
vival, including a treatment effect parameter (coded to indi-
cate being on control arm therapy relative to experimental
arm, so the intercept represents the effect of experimental
treatment). This is done so all the additional variance from
the RPSFT method is contained in the treatment effect and is
not split between the treatment effect and the intercept.
2.
 Derive an adjustment factor using equation 2, where SEADJð βÞ
is defined as with equation 1, where β is the estimate of the
treatment effect from the parametric model, and SEOBS βð Þ is
the estimated standard error.

F¼ SEADJ βð Þ
SEOBS βð Þ ð2Þ
3.
 Multiply all components of the covariance matrix that involve
covariance with treatment effect by this adjustment factor.
This assumes that the correlation between the parametric
model parameters and treatment effect is not modified
through the use of the RPSFT adjustment. This is illustrated
for a Weibull model with parameters µ (intercept), β (treat-
ment effect for control relative to experimental) and γ (shape)
in equations 3 and 4; however, very similar derivations apply
for other parametric survival models. Equation 3 shows the
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estimated covariance matrix, whereas equation 4 shows the
form of the adjusted matrix using the proposed method.

V¼
v11 v12 v13
v21 v22 v23
v31 v32 v33

2
64

3
75¼

σ2μ ρðμβÞσμσβ ρðμγÞσμσγ

ρðμβÞσμσβ σ2β ρðβγÞσβσγ

ρðμγÞσμσγ ρðβγÞσβσγ σ2γ

2
664

3
775 ð3Þ

U¼
u11 u12 u13

u21 u22 u23

u31 u32 u33

2
64

3
75¼

σ2μ ρðμβÞσμFσβ ρðμγÞσμσγ

ρðμβÞσμFσβ ðFσβÞ2 ρðβγÞFσβσγ

ρðμγÞσμσγ ρðβγÞFσβσγ σ2γ

2
664

3
775

¼
v11 Fv12 v13
Fv21 F2v22 Fv23
v31 Fv32 v33

2
64

3
75 ð4Þ

This adjusted covariance matrix can then be used for PSA in
the usual manner following standard methods as described by
Briggs et al. [13].

Estimating the Covariance Matrix with Bootstrapping

Alternatively, to generate a covariance matrix with bootstrap-
ping, samples from the data set are taken with replacement, and
the entire RPSFT procedure, including grid search is repeated. The
parametric model is then fit to the observed experimental data
and counterfactual survival data to yield a set of parameters for
each sampled data set. The covariance of these bootstrapped
parameters is then used as an estimate for the covariance matrix
(Fig. 1). It should be noted that bootstrapping of g-estimation
procedures is not trivial because considerable care has to be
taken in how the convergence of the bootstrap estimates is
assessed and nonconvergence included in the results.

Simulation Study Design

To illustrate the performance of the novel test-based approach
compared with bootstrapping the covariance matrices and to
making no adjustment to the covariance matrix, 500 data sets
simulating a common RCT design were generated. The simula-
tion design used was identical to that of Scenario Number 1,
which was described in detail by Morden et al. and which was
believed to reflect what is often observed in clinical practice [14].
Each data set contained 500 patients randomly allocated in a 1:1
Fig. 1 – Overview of the modeling analysis comparing
different approaches to incorporating RPSFT in PSA. CE,
cost-effectiveness; PSA, probabilistic sensitivity analysis;
RPSFT, Rank Preserving Structural Failure Time.
ratio to receive either active therapy or standard care. Patients
were entered into the analysis on the basis of sampling from a
uniform random distribution over the course of 1 year. Under-
lying survival time for each patient was simulated from a Weibull
distribution with parameters: shape 0.5, scale 1.33. Of the
patients simulated, 30% were randomly selected to have “good”
prognosis and had their survival inflated by a factor of 1.2. For
patients in the standard care arm, treatment switching was
applied to 10% and 25% for patients with “good” or “poor”
prognosis, respectively. The time of switch was generated by
sampling from a uniform distribution between study entry and
death. An acceleration factor (ψ) of 1.23 (which corresponds to an
HR of 0.9) was applied to patients in the active arm for the
duration of their survival and to those in the standard care arm
for the time from switching to the end of OS. A data cut-off time
of 3 years was applied, with censoring implemented for any OS
times extending beyond that period.
Assessment of Simulations

For each simulated data set, RPSFT was performed, a parametric
model fit, and the associated covariance matrix was estimated by
using the adjustment method and by bootstrapping. These
estimated parameters and associated covariance matrices were
then used as inputs into a simple economic model within R (R
Core Team, 2014). This economic model was then used to
evaluate overall (undiscounted) life expectancy from each of the
500 simulated data sets for both treatment arms. Statistical
uncertainty around these estimates was estimated by performing
PSA by sampling each of the derived variance/covariance matri-
ces 5000 times.
Application of Test-Based Approach Using Published
Summary Data

Individual patient data (IPD) is not commonly available to health
service researchers, particularly for all relevant comparators,
leaving those undertaking economic evaluations reliant upon
published study summary results. A benefit of the test-based
approach is the lack of reliance on acquiring the IPD when
published unadjusted and RPSFT adjusted survival curves are
available. An additional analysis was performed using the ITT
and RPSFT-adjusted OS Kaplan-Meier (KM) estimates presented
by Schlumberger et al. comparing lenvatinib to placebo for treat-
ment of radioiodine-refractory thyroid cancer to demonstrate the
approach [15].

The initial step was to recreate or simulate individual patient
OS times from the KM data, using the algorithm by Guyot et al.
[16]. Individual OS times were recreated from both the ITT or
unadjusted and RPSFT-adjusted KM curves and numbers of
patients at risk. To ensure the robustness of the recreated
survival times, summary statistics from the publication and our
analysis were compared (Supplementary Appendix Table 1).

Following the steps outlined in the earlier section, parametric
Weibull functions were fit to the recreated survival times. The
required adjustment factor, as outlined in equation 2, was then
calculated before being applied to the covariance matrix
(Supplementary Appendix Table 2). These estimated parameters
and original and inflated covariance matrices were then used as
inputs into a simple decision model within Microsoft Excel
(Microsoft Corporation, Redmond, WA). The parameter estimates,
along with the inflated covariance matrix were sampled 5000
times using PSA. The proportion of simulations where lenvatinib
had a lower mean life expectancy compared with placebo was
recorded.
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Fig. 3 – Illustration of results from the 500 simulations
comparing different approaches to incorporating RPSFT
model in PSA. PSA, probabilistic sensitivity analysis; RPSFT,
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Results

Mean estimates of OS and incremental life expectancy were
similar when using all three methods across all 500 simulated
data sets, as anticipated. However, the bootstrapped and test-
based estimates consistently produced greater estimates of
uncertainty compared with the conventional approach (Fig. 2).
Using the conventional approach (not incorporating RPSFT
model-attributed uncertainty into the variation around the
parameter estimates), the width of the 95% CI for mean life years
gained ranged from 0.20 to 0.29, with a mean of 0.24. When the
bootstrap approach was used, this range increased to 0.20 to 0.36,
with a mean of 0.26. The test-based adjustments to the variance/
covariance matrix performed in a similar way to the bootstrap
approach (Fig. 3). The similarity between the estimates from the
bootstrapping approach and the proposed test-based approach
indicate that the assumption made in the test-based approach—
that the correlation between the parametric model parameters
and treatment effect is not modified through the use of the RPSFT
adjustment—is reasonable.

Similar results were observed using the test based approach
using summary data; that is, failing to adjust the covariance
matrix led to smaller CIs and suggested that the probability of
placebo being determined to be more efficacious than lenvatinib
was 0.74%, compared with 7.36% after the adjustment.
Rank Preserving Structural Failure Time.
Discussion

In recent years, HTA decisions in oncology are increasingly being
made on the basis of the results of RCTs that involve treatment
switching. To support this process, decision analytic models for
oncologic interventions are required to estimate life expectancy
(and quality-adjusted life expectancy) by parametrically extrap-
olating survival times derived using the RPSFT method. HTA
agencies commonly require that the results of PSA are presented
alongside deterministic outcomes from cost-effectiveness mod-
els, to better understand the statistical uncertainty around
ig. 2 – Illustration of results from the 500 simulations
omparing different approaches to incorporating RPSFT
odel in PSA. PSA, probabilistic sensitivity analysis; RPSFT,
ank Preserving Structural Failure Time.
modeled outcomes. Typically, PSA is utilized to present the
likelihood of an intervention being considered cost-effective by
incorporating uncertainty around a range of model parameters.
Conventionally, when parametric survival modeling is used, the
variance/covariance matrix is typically sampled to propagate a
distribution around estimates of life expectancy for both inter-
ventions. However, this approach does not account for the
increased uncertainty in survival times attributed to the RPSFT
method. The present study provides evidence that failure to
accurately account for the increased uncertainty around life
expectancy estimates associated with an RPSFT model can
substantially influence the outcomes of PSA. Moreover, the
current analysis only included estimates of life expectancy; had
utility values and direct costs been included, the impact on the
probability of a treatment being considered cost-effective may
have been even greater.

An advantage of using an RPSFT model is that it creates a
counterfactual data set (data that we would have observed had
treatment switching not occurred) and has been shown to
perform well across a range of simulation studies [14,17,18].
Standard parametric survival models used in decision models
to estimate mean survival (and therefore life years gained,
quality-adjusted life years gained, etc.) can be fitted to this
counterfactual data set. The present study shows that without
correctly adjusting for uncertainty around parameter estimates,
there is a risk of reaching false conclusions (e.g., standard errors
are lower and CIs are narrower, which may imply statistical
significance that is not genuine and underestimating the costs of
later lines of therapy). The mean treatment effect (HR, in the
present example) should also be tested using the P value from the
ITT analysis, rather than the treatment effect produced by Cox or
parametric modeling using the counterfactual dataset.

Life expectancy in the decision analytic models were calcu-
lated using Weibull distribution for illustrative purposes, as this
is one of the more common parametric models used in HTA
submissions [19]. The principles described are equally applicable
to other parametric functions, including mixture cure rate
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models, which are increasingly utilized in the evaluation of
immune-oncology treatment options [20].

Adjusting for treatment switching when results are con-
founded is likely to become an increasingly important aspect of
HTA decision making in oncology in the years ahead because
trials have reduced initial follow-up and use intermediate end-
points. The present analysis describes a novel approach to
adequately adjust for uncertainty when using an RPSFT model,
by simulating life expectancy in a hypothetical trial involving
treatment switching. In addition, this analysis demonstrates the
utility of the test-based approach in the case where IPD are not
available preventing the use of bootstrapping. The evidence
indicates that health researchers implementing treatment
switching–adjusted survival data into decision models need to
ensure uncertainty is handled appropriately to guard against
spurious conclusions about the relative effectiveness (and there-
fore cost-effectiveness) of new interventions. Both the bootstrap-
ping approach and the test-based approach provide a solution to
appropriately incorporate uncertainty, with the benefit that the
latter can implemented by researchers in the absence of IPD.

Funding: The analysis was financially supported by F. Hoffman-
La Roche, Basel, Switzerland.
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